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Abstract

A three-dimensional numerical simulation is carried out to investigate the natural convection in a shallow wedge

subject to solar radiation. The study reveals three distinct stages of the flow development from an isothermal and

stationary state: an initial stage, a transitional stage and a quasi-steady stage. The heat transfer at the initial stage is

dominated by conduction from the sloping bottom. The transitional stage starts with the onset of instabilities, and the

quasi-steady state is characterised by steady growth of a spatially averaged temperature. The present results have

confirmed the earlier observations in a flow visualisation experiment and a two-dimensional simulation.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

This study considers the unsteady natural convection

in a wedge subject to solar radiation. It is motivated by

interest in understanding the buoyancy-induced heat

and mass transport in littoral waters [1–5]. The daytime

heating model developed by Farrow and Patterson [5],

who presented an asymptotic solution based on the as-

sumption of small bottom slopes, is reinvestigated here

with a direct numerical procedure. In this model, the

incident surface radiation was absorbed by the water

body according to Beer�s law (see Section 2 for details).

This model took explicit account of the depth dependent

absorption of the radiation, which closely represented

reality. In addition, it assumed that any residual radia-

tion at the bottom was absorbed by the bottom and the

absorbed energy was re-emitted as a heat flux. This flux

was greater at the shallow end than at the deeper, and

gave rise to a destabilizing temperature gradient at the

bottom.

It is clear that this daytime heating model is driven by

both internal buoyancy sources and a boundary heat

flux. In this case, there are competing stability effects:

the stabilizing effect of the stratification introduced by

the absorption of solar radiation in the upper part of the

water column and the destabilizing effect of the bottom

boundary heat flux. The understanding of the fluid dy-

namics for this problem has great significance due to its

special geometry and complex forcing conditions. Al-

though this problem is framed in the context of the near

shore transport question, it is clearly relevant to any

buoyancy driven flow in which these competing stability

effects are present, and therefore the present study

should find broader applications.

It is worth noting here that the absorption of incident

radiation imposes a natural length scale appropriate to

the radiation and the fluid, i.e. the attenuation length.

Typically in natural water bodies, this length scale is

O(1–2 m), i.e. most of the radiation is absorbed between

the surface and this depth. Consequently, a water body

with a sloping bottom may be separated into two re-

gions: the first, a shallow region near the shore in which

the forcing is dominated by the boundary flux mecha-

nism described above; and a second deeper region in

which the incident radiation serves only to stratify the

upper part of the water body, with the motions being

passively driven by the events of the first region. In the

early study reported in [5], a semi-infinite wedge which

covered both the shallow and deeper regions was
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considered, whereas in this study only the shallow region

affected by the bottom heat flux is concerned. The fluid

dynamics and major scales in shallow waters subject to

solar radiation has been discussed in detail by Lei and

Patterson [6].

Lei and Patterson [7] also conducted a model exper-

iment to visualise the convection process in a shallow

triangular cavity driven by the aforementioned combi-

nation of forcing mechanisms. The experiment was con-

ducted in an L� � W � � h� ¼ 0:6 m� 0:3 m� 0:06 m

perspex tank with a fixed bottom slope of A ¼ 0:1 (see

Nomenclature and Fig. 1 for definitions and dimen-

sions). The tank was filled with water originally in an

isothermal and stationary state. The solar radiation was

simulated using a spot theatre lamp. A constant radia-

tion with an intensity of I0 ¼ 50 W/m2 was applied in-

stantaneously on the water surface. The bottom of the

tank was made black so that it absorbed any residual

radiation reaching the bottom. The convective flow was

then visualised using a shadowgraph technique, and

temperatures were measured simultaneously at discrete

locations along the sloping bottom. Three distinct stages,

an initial stage, a transitional stage and a quasi-steady

stage, of the flow development were identified from the

experiment. The initial stage is characterised by domi-

nation by conduction near the bottom boundary, re-

sulting in the growth of a thermal layer there. The

transitional stage is characterised by the presence of

instabilities emanating from the bottom boundary which

are manifested as rising plumes translating up the slope.

The quasi-steady state is characterised by a steady rise in

average temperature and quasi-regular presence of in-

stabilities with reduced intensities.

Nomenclature

A bottom slope, A ¼ h�=L� ¼ h=L
Cp specific heat (J/kg�C)
g acceleration due to gravity (m/s2)

Gr Grashof number, Gr ¼ gbH0h4=ðm2kÞ
H dimensionless heat transfer rate

H0 volumetric heating intensity at the surface

(m�C/s), H0 ¼ I0=ðq0CpÞ
I , I0 radiation intensity at a given water depth

and water surface (W/m2)

k thermal diffusivity (m2/s)

L, W , h dimensionless length, width and maximum

water depth of the wedge

L�, W �, h� length, width and maximum water depth

of the wedge (m)

n� coordinate normal to the bottom (m)

p dimensionless pressure

p� pressure (N/m2)

Pr Prandtl number, Pr ¼ m=k
Q dimensionless flow rate

t dimensionless time

t� time (s)

T dimensionless temperature

T � temperature (�C)
T0 starting water temperature (�C)
T spatially averaged temperature (�C)

u, v, w dimensionless velocity components in x, y
and z directions

u�, v�, w� velocity components in x�, y� and z� direc-

tions (m/s)

x, y, z dimensionless coordinates

x�, y�, z� coordinates in horizontal, vertical and

transverse directions (m)

Greek symbols

b coefficient of thermal expansion (1/�C)
/ any quantity of the flow

g dimensionless bulk attenuation coefficient

for water

g� bulk attenuation coefficient for water (1/m)

m kinematic viscosity (m2/s)

q0 density (kg/m3)

s dimensionless temperature variation

s� temperature variation (�C)

Superscript

* dimensional quantities

Subscripts

x, y, z partial derivatives with respect to a spatial

direction

t partial derivatives with respect to time

Fig. 1. Geometry of the physical domain.
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The above experiment was reproduced in a two-

dimensional (2-D) simulation [8], and the numerical re-

sults clearly indicated a three-stage development of the

convective flow, confirming the experimental observa-

tions based on the shadowgraph visualisation. How-

ever, the application of a 2-D model for an essentially

three-dimensional (3-D) experiment has limited the ac-

countability of the numerical simulation. Moreover, the

features of the 3-D convective instability as observed in

the experiment cannot be fully resolved in the 2-D

simulation.

The present investigation is a corresponding 3-D

numerical simulation of the previously reported experi-

ment [7]. In this study, the full 3-D governing equations

are solved directly with high order numerical schemes.

The detail of the numerical procedures is given in Sec-

tion 2, and the numerical results are presented in Section

3, which also compares the 3-D simulation with the

previous experiment and 2-D simulation. The applica-

tion of a direct numerical procedure allows a detailed

examination of the flow features without imposing re-

strictions to the system parameters and simplifying the

forcing model.

2. Formulation and numerical procedures

A 3-D wedge (see Fig. 1) with rigid non-slip bound-

aries at the bottom and end and an open boundary at

the top is considered. The wedge is filled with water

initially at rest and at temperature T0. At time t� ¼ 0, a

surface radiation of intensity I0 is initiated and thereafter

maintained. When the radiation travels through a water

column, the radiation intensity at a particular wave-

length decreases with depth according to Beer�s law

[5,9,10]:

I ¼ I0eg�y� ðy� 6 0Þ ð1Þ

The attenuation coefficient for water is strongly de-

pendent on the wavelength of the radiation and the

turbidity of water [10]. However, it is assumed here that

the absorption of the solar radiation is characterised by

a single bulk attenuation coefficient, which is a com-

mon practice in most limnological applications and also

consistent with the previous 2-D simulation [8]. The

shallow wedge assumption implies that the water depth

is less than the attenuation length of the radiation, i.e.

h� < 1=g�. In this case, a significant amount of radiation

reaches the sloping bottom.

The subsequent flow and temperature changes within

the wedge are governed by the 3-D Navier–Stokes

equations and energy equation with Boussinesq as-

sumptions:

ou�
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The second term on the right-hand side of the energy Eq.

(5) quantifies the absorption of radiation by the water

[5].

The temperature and velocity boundary conditions

for the present model are as follows (see also [5] except

Item (4) for the boundary conditions on the transverse

sidewalls):

(1) On the sloping bottom ðy� ¼ �Ax�Þ, it is assumed

that any residual radiation is fully absorbed by the

bottom, which then immediately releases the energy

back to the water in a form of a boundary heat flux.

Accordingly, the boundary condition for the tem-

perature is:

oT �

on�
¼ �H0

k
e�Ag�x� ðy� ¼ �Ax�Þ ð7Þ

This boundary condition matches the black bottom

model used in the experiment [7] and is approxi-

mately representative of reality. In field situations,

the residual radiation reaching the bottom is either

absorbed or reflected or scattered by the bottom.

Most of the reflected and scattered radiation is ul-

timately absorbed by the water body, mainly by the

lower layer near the bottom. The velocity conditions

on the sloping bottom are those for a rigid non-slip

wall, i.e. u� ¼ v� ¼ w� ¼ 0.

(2) The end-wall ðx� ¼ L�Þ is insulated, i.e. oT �=ox� ¼ 0,

and rigid non-slip velocity conditions apply to this

boundary.

(3) On the water surface ðy� ¼ 0Þ, the heat loss through
the surface is neglected. In other words, it is assumed

that the water surface is insulated (i.e. oT �=oy� ¼ 0).

It is also assumed that the water surface is stress free

ðou�=oy� ¼ ow�=oy� ¼ 0 and v� ¼ 0Þ. The stress free

surface condition is compatible with the previous ex-

periment and also the field conditions in geophysical

applications.
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(4) In the transverse direction, periodic boundary condi-

tions apply, i.e. /ðz� ¼ 0Þ 	 /ðz� ¼ W �Þ, where /
represents any quantity of the flow (u�, v�, w�, T �,

p� and their derivatives). The implementation of

these conditions in our numerical simulations en-

sures up to the second derivatives are equal at the

two ends in the transverse direction.

Since the water body in the wedge is heated contin-

uously by absorbing the radiation penetrating through

the water column and there is no heat loss through the

boundaries, the water temperature will keep increasing

without a limit, and there will be no steady state in terms

of temperature. However, with a constant surface radi-

ation being applied, a quasi-steady state may be reached

in which the temperature increases at the same rate ev-

erywhere in the wedge whereas the temperature gradi-

ents and flow velocities become steady. The temperature

variation can be split into two components:

T � � T0 ¼ T ðt�Þ þ s�ðx�; y�; z�; t�Þ ð8Þ

i.e. a spatially averaged temperature which increases in

time, and a spatial variation of temperature which has a

steady state spatial distribution after a transition. The

spatially averaged temperature T ðt�Þ can be obtained

from a balance of energy entering from the surface and

that absorbed by the water body, which gives T ðt�Þ ¼
ð2H0=h�Þt�. It is seen that the average temperature in the

tank increases linearly with time.

Substituting Eq. (8) into Eq. (5) yields an energy

equation with respect to s�

os�

ot�
þ u�

os�

ox�
þ v�

os�

oy�
þ w� os

�

oz�

¼ kr2s� þ ðH0g
�eg�y� � 2H0=h�Þ ð9Þ

Since all boundary conditions for the temperature ðT �Þ
involve temperature gradients only and are independent

of time, the same boundary conditions apply for s� as for
T � Eq. (9) is identical to Eq. (5) except that there is an

extra term of heat sink on the right hand side. This is

interpreted as placing a uniformly distributed heat sink

equal to 2H0=h� across the enclosure while it is heated by

the absorption of radiation entering from the surface.

When the heat loss from the sink is balanced by the heat

capture from the absorption of radiation, a steady state is

reached for s�, corresponding to the quasi-steady state

for T �. In the following context, no distinction is made

between the quasi-steady state for the temperature T �

and the steady state for the temperature s�. The complete

system equations now consist of Eqs. (2), (3), (4), (9) and

(6) with the term ðT � � T0Þ in Eq. (3) replaced by s�.
The quantities in the quasi-steady system equations

are then normalised by the following scales: the length

scale h� the time scale ðh�Þ2=k, the temperature variation

scale H0h�=k, the velocity scale k=h� the pressure gradi-

ent scale q0gbH0h�=k and the attenuation coefficient

scale ðh�Þ�1
. The system equations are rewritten in di-

mensionless forms as follows:

ut þ uux þ vuy þ wuz ¼ �ðPr2GrÞpx þ Prr2u ð10Þ

vt þ uvx þ vvy þ wvz ¼ �ðPr2GrÞpy þ Prr2vþ ðPr2GrÞs
ð11Þ

wt þ uwx þ vwy þ wwz ¼ �ðPr2GrÞpz þ Prr2w ð12Þ

st þ usx þ vsy þ wsz ¼ r2s þ ðgegy � 2Þ ð13Þ

ux þ vy þ wz ¼ 0 ð14Þ

All quantities in Eqs. (10)–(14) are now dimension-

less. The boundary conditions defined previously are

also normalised with the same scales. The normalised

governing equations are then solved together with nor-

malised boundary conditions using a finite difference

scheme. The velocity components and temperature are

directly obtained from the Navier–Stokes equations and

the energy equation, and the pressure is calculated from

a pressure Poisson equation formed directly from the

Navier–Stokes equations. The standard second-order

central differencing scheme is used for all spatial deriv-

atives except the non-linear terms in the momentum and

energy equations, which are approximated with a mod-

ified second-order upwind scheme. The time integra-

tion for the velocity components and temperature is

by a second-order time accurate backward differencing

scheme. The system equations are solved implicitly with

an iterative procedure. A successive over-relaxation

method is used for all equations including the pressure

Poisson equation. Details of the numerical schemes can

be found in [11].

3. Numerical results

The experiment described in [7] is now simulated with

the aforementioned numerical procedures. The calcula-

tion is conducted in a flow domain of dimensions cor-

responding to those of the experimental tank, i.e. L ¼
10, W ¼ 5, h ¼ 1 and A ¼ 0:1. To avoid a singularity at

the tip in numerical calculations, the tip is cut off at

x ¼ 1, and an extra rigid non-slip and adiabatic wall

boundary is assumed here. It is anticipated that the flow

in the interior of the domain is not modified signifi-

cantly. The tank is filled with pure water, for which the

dimensionless bulk attenuation coefficient is 0.37 (taken

from the experimental configuration). The convective

flow is calculated at Gr ¼ 2:51� 106 and Pr ¼ 6:83,
which are also obtained from the experiment.

A non-uniform mesh is constructed for the modified

physical domain so that nodes are effectively clustered to
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the vicinities of all boundaries in the ðx; yÞ plane. In the

transverse direction, nodes are uniformly distributed. A

test of mesh and time-step dependence is conducted

prior to the calculation, and the results will be presented

later in Section 3.5. Unless specified, the following re-

sults are obtained from an 81� 61� 41 mesh with up to

15 nodes allocated within the bottom thermal boundary

layer (based on the experimental measurement of [7]).

3.1. Early-stage flow

Similar to the 2-D simulation [8], the growth of a

thermal boundary layer along the sloping bottom and

the inception of a large-scale circulation across the en-

closure can be identified at this stage.

3.1.1. Growth of the thermal boundary layer

The temperature structures within the wedge at the

early stage after the initiation of the surface radiation

are given in Fig. 2. Fig. 2a presents the iso-surfaces of

temperatures ðs ¼ 0Þ at t ¼ 0:001 and 0.003 (corre-

sponding to t� ¼ 25 and 76 s), while Fig. 2b presents

shadowgraph images at the same stage (refer to [7] for

details). Note that the times chosen from the numerical

simulation (Fig. 2a) are different from those chosen from

the experiment (Fig. 2b) although they are basically of

the same order. We noticed that the flow development

in the laboratory experiment is slightly ahead of that in

the numerical simulation. Throughout this paper, the

selection of numerical and experimental results for

comparisons is based on the criterion that both results

demonstrate the most important flow features at differ-

ent stages of the flow development. The time indicated in

the context should not be matched between the simula-

tion and experiment. It is also noteworthy that the

temperature data presented here is obtained by solving

the quasi-steady state temperature equation (Eq. (13)),

in which a heat sink is introduced to balance the linear

growth of the spatially averaged temperature with time.

A negative value of temperature ðs < 0Þ in the enclosure

indicates a lower growth rate of the temperature relative

to the mean growth across the tank, and a positive value

ðs > 0Þ indicates a higher growth rate relative to the

mean growth. Therefore, it is the relative value rather

than the absolute value of the temperature that is

meaningful to subsequent discussions.

In the present case, over 70% of the incident radia-

tion reaches the bottom (estimated using Eq. (1)). The

residual radiation is absorbed by the sloping bottom and

then released back to the lower part of the water body.

Therefore, a thermal boundary layer is expected to de-

velop along the sloping bottom. This is clearly demon-

strated in Fig. 2. It is observed from the numerical

simulation that the temperature in a region close to the

sloping bottom increases sharply at the early stage due

to the diffusion of heat flux from the boundary. Apart

Fig. 2. Temperature structure at the early stage. (a) Iso-surfaces

of temperatures at t ¼ 0:001 and 0.003 (t� ¼ 25 and 76 s). (b)

Shadowgraphs at 10 s (upper portion) and 30 s (lower portion)

showing the growthof a thermalboundary layer. (c)Temperature

profile along the vertical line ðx; zÞ ¼ ð5:5; 2:5Þ. (d) Temperature

profile along the horizontal line ðy; zÞ ¼ ð�0:5; 2:5Þ.
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from this boundary region which has positive tempera-

tures, the temperatures in the rest of the enclosure are

negative. Therefore, the core region and the thermal

boundary layer are approximately separated by the

s ¼ 0 iso-surface. It is seen in Fig. 2a that the iso-surface

of s ¼ 0 quickly moves away from the sloping bottom,

indicating a rapid expansion of the thermal boundary

layer, which is in good agreement with the shadowgraph

visualisation (refer to Fig. 2b and also [7]). On the

shadowgraphs (Fig. 2b), the thermal boundary layer and

the core region were separated by a narrow bright band,

which was also seen to quickly move away from the

boundary during the experiment. Therefore, the width

of the dark band immediately underneath the bright

band approximately indicated the thickness of the ther-

mal boundary layer. It is also found in the numerical

simulation that the temperature variation in the negative

region is negligible compared with that of the boundary

region, suggesting that the bottom heating is dominating

the radiation absorption by the water column at the

early stage.

Two more conclusions can be drawn from the tem-

perature structure presented in Fig. 2a: first, the tem-

perature structure is purely 2-D at this stage; and

second, the iso-surfaces of s ¼ 0 are approximately

parallel to the sloping bottom. In fact, all of the iso-

surfaces of positive temperatures within the thermal

boundary layer are parallel to the sloping bottom at the

early stage, suggesting that the entire thermal boundary

layer is parallel to the bottom, and thus the variation of

the heat flux boundary condition along the sloping

bottom is insignificant. A similar result has been ob-

served in the experiment [7], which showed that the

thickness of the thermal boundary layer was growing on

a scale of Oððkt�Þ1=2Þ, and the variation of the thickness

along the boundary layer was minimal. It is also found

in the present simulation that the iso-surfaces of tem-

peratures outside the thermal boundary layer are hori-

zontal (not shown in Fig. 2a), indicating a very weak

stratification caused by direct absorption of the radia-

tion by the water body.

The growth of the thermal boundary layer along the

slope can also be observed in Fig. 2c and d, which plot a

series of temperature profiles along the vertical and

horizontal directions. It is seen that large temperature

gradients are established in the region near the bottom,

while the temperature in other regions is nearly uniform

at this early stage (the scales chosen to emphasize the

boundary layer are not suitable to demonstrate the

previously mentioned weak stratification). The existence

of a vertically adverse temperature gradient near the

bottom boundary is also clearly demonstrated in Fig. 2c.

A similar temperature structure has been revealed in [5]

based on an asymptotic solution of the governing

equations. The vertically adverse temperature gradient is

the direct cause of the convective instability discussed

below, while the horizontal temperature gradient is the

initial driving force of a large-scale circulation in the

enclosure.

3.1.2. Inception of the circulation

As noted previously, a distinct horizontal tempera-

ture gradient develops within the thermal boundary

layer at the early stage. This temperature gradient then

initiates a flow up the slope. In the region near the tip,

the boundary layer flow discharges into the core region,

and thus an upper intrusion flow travelling from the

shallow end to the deep end is formed. As a conse-

quence, a clockwise circulation is established in the en-

closure. This is clearly demonstrated in Fig. 3a and b,

which presents the velocity field and streamlines in a

sectional plane at halfway along the transverse direction.

Since the flow is 2-D at this stage, there is no flow in the

transverse direction, and thus all the velocity vectors

stay within the sectional plane. A flow structure com-

prising only a single 2-D circulating cell can be identified

from Fig. 3a and b.

It is also seen from the velocity field in Fig. 3a that

the flow in the majority of the domain is very weak at

t ¼ 0:001. Distinct flow motions are seen in the bottom

boundary layer and near the shallow end. Due to the

fluid being drawn by the up-sloping boundary layer

flow, a distinct downward flow is also seen at the deep

end. As time moves on, more and more fluid in the core

region is accelerated (see Fig. 3b). Fig. 3a and b also

demonstrate that the center of the circulating cell grad-

ually moves away from the sloping bottom. This is due

to the growth of the thermal boundary layer, and also

indicates that the large-scale circulation is primarily in-

duced by the temperature gradient in the boundary re-

gion.

Fig. 3c and d plot a series of velocity profiles (u and v
only since w ¼ 0) along the vertical line ðx; zÞ ¼ ð5:5; 2:5Þ
at various times of the early stage. These velocity profiles

clearly demonstrate the existence of a secondary viscous

layer above the sloping bottom. Within the viscous

layer, the flow is travelling up the slope (u < 0 and

v > 0). At t ¼ 0:001, a local flow up the slope is clearly

seen in a thin layer above the bottom. Apart from this

layer, the velocity is essentially uniform over the depth

at this time. As time moves on, the viscous layer expands

rapidly, and the flow up the slope accelerates, as does the

core flow. It is also noteworthy that the maximum value

of jvj is approximately an order of magnitude smaller

than that of juj. The ratio jvj=juj is coincidently the same

as the bottom slope (A ¼ 0:1 in this case). This result

confirms that the upwelling flow is approximately par-

allel to the sloping bottom at the early stage.

The asymptotic solution of Farrow and Patterson [5]

also revealed similar features of the velocity field in a

triangular domain subject to surface radiation. Since a

semi-infinite wedge is considered in [5], the temperature
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structures can be divided into two distinct regions at any

particular time, one with vertical isotherms and the

other with horizontal isotherms. In the former region the

horizontal temperature gradient drives the circulation,

while in the latter region the Phillips mechanism [12,13]

drives the flow. These driving mechanisms are justified in

terms of the large-time behaviour, but do not apply to

the early flow development, especially for the shallow

region considered here. As can be seen in Fig. 2, the iso-

surfaces of temperatures in the early stage are neither

vertical nor horizontal but parallel to the sloping bottom

due to the development of the thermal boundary layer.

Therefore, the initial driving force of the upwelling cir-

culation must come from the horizontal temperature

gradient within the thermal boundary layer.

3.2. Transitional flow

For the present flow parameters, two different types

of flow instabilities are observed from the 3-D calcula-

tion at the transitional stage, the first a 2-D flow insta-

bility and the second a 3-D B�eenard type instability.

3.2.1. 2-D flow instability

The 2-D flow instability, which manifests itself in a

form of hydraulic-jump like structure, starts from the

very deep corner (see Fig. 4a for the temperature

structure at t ¼ 0:006 or t� ¼ 151 s). This instability

is evidently due to the discontinuity of the thermal

boundary conditions at this corner. As mentioned in

Section 2, an adiabatic wall is assumed at the deep end,

whereas a constant heat flux condition applies to the

sloping bottom. It has been observed in the previous

section that a thermal boundary layer is developing

along the sloping bottom, creating iso-surfaces approx-

imately parallel to the bottom. However, the adiabatic

boundary condition at the end-wall requires the iso-

surfaces there to be normal to the end-wall. Therefore,

there is some adjustment of the temperature structure

near the deep corner, resulting in an additional thermal

boundary layer along the end-wall. These two boundary

layers are governed by different mechanisms, and thus

they are growing on different scales. The discontinuity of

the thickness of the thermal boundary layers at the

deeper corner then triggers the 2-D instability under a

critical condition while the flow is changing its direction

there. As a consequence, the jump like structure is

generated.

As time moves on, the jump like structure amplifies

and moves downstream (up the slope) along the bottom

boundary layer (see the structure at t ¼ 0:009 or t� ¼ 227

s in Fig. 4b). Since the above-mentioned perturbation is

purely 2-D, the flow remains 2-D at this stage (Fig. 4a

and b). A similar structure was also present in the 2-D

simulation [8], but it could not be distinguished from the

Fig. 3. Velocity field at the early stage. (a) and (b) Velocity

vectors and streamlines. (a) t ¼ 0:001. (b) t ¼ 0:003. (c) and (d)

Velocity profiles along the straight line ðx; zÞ ¼ ð5:5; 2:5Þ. (c)

Horizontal velocity component. (d) Vertical velocity compo-

nent.
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3-D structures (see below) due to the nature of the 2-D

calculation.

3.2.2. 3-D B�eenard type instability
While the 2-D jump like structure is being amplified,

it increases the local Rayleigh number by increasing the

local thickness of the thermal boundary layer. Eventu-

ally, this structure becomes unstable to the Rayleigh–

B�eenard instability. This is demonstrated in Fig. 5a (for

t ¼ 0:0102 or t� ¼ 258 s), in which a line of warm water

has been released from the jump like structure into the

upper cold layer. It is interesting to note that the local

flow remains 2-D at this time though three-dimensio-

nality is developing in the wedge.

In the meantime, residual radiation continues to be

absorbed by the sloping bottom, and heat continues to

be diffused into the thermal boundary layer while the

surface radiation is maintained. Therefore, the thermal

boundary layer keeps growing. As a consequence, the

Rayleigh–B�eenard instability is also developing across

the entire bottom boundary layer. At certain stage, the

Rayleigh–B�eenard instability will manifest itself as verti-

cal convection. In the shadowgraph visualisation, dis-

tinct plumes of warm water, indicated by gradually

strengthening dark bands on the shadowgraphs (see Fig.

5c), were seen to arise from the bottom thermal layer

after about 60 s after initiation of the surface radiation

[7]. The same phenomenon is also observed here in the

numerical simulation, although at a later time, as dis-

cussed above.

Fig. 5b presents the temperature structure obtained

at t ¼ 0:015 (t� ¼ 379 s), showing the occurrence of ris-

ing plumes. It is seen in this figure that warm water is

rising from the bottom thermal layer at different loca-

tions in the domain, and the flow has become fully 3-D

at this time. In the region near the shallow end, the flow

is turning approximately 180�. The combined turning

and uprising motions of the flow result in a complicated

structure there. In the deeper region, 3-D structures in

the form of rising plumes are present. Since the upper

Fig. 5. Flow structures with the presence of the B�eenard type

instability. (a) Temperature iso-surface at t ¼ 0:0102 (t� ¼ 258

s). (b) Temperature iso-surface at t ¼ 0:015 (t� ¼ 379 s). (c)

Shadowgraph at 100 s.

Fig. 4. Flow structures with the presence of a 2-D instability.

(a) Temperature iso-surface at t ¼ 0:006 (t� ¼ 151 s). (b) Tem-

perature iso-surface at t ¼ 0:009 (t� ¼ 227 s).
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fluid layer is cold at this stage, the plumes are seen to

penetrate through the entire local depth of the water

column, which is consistent with the shadowgraph ob-

servation at the same stage [7]. At this time, the intensive

occurrence of rising plumes has destroyed the bottom

thermal layer. It is noteworthy that the burst of rising

plumes is not regular; there are no fixed locations and

frequencies in this process. In addition, it is observed

both numerically and experimentally that the rising

plumes are carried by the primary circulation up the

slope. Therefore, no stable configuration of the tem-

perature structure will be reached. However, a quasi-

steady state pattern will be reached at a later stage (see

Section 3.3).

The observed convective instability in the form of

rising plumes exhibits many features of the intermittent

convection observed by Sparrow et al. [14] and later

discussed by Foster [15]. However, the difference be-

tween the present and the early observations are also

distinct. Sparrow et al. observed the plumes occurring

from a horizontal fluid layer heated from below, in

which there is no primary flow except the convection due

to instability, and found that the bursts of plumes have

fixed locations once established [14]. In the present case,

a primary circulation is established in the wedge prior to

the onset of the instability, which drags the rising plumes

up the slope in the later stage. Therefore, the bursts of

plumes have no fixed locations. Horsch and Stefan [1]

have observed similar flow structures in a numerical

simulation of littoral waters subject to surface cooling.

In that case, the primary circulation is travelling down

the slope instead of up the slope, and the plumes are

formed in a cooling layer under the water surface and

are sinking down into the lower warm layer.

It is worth noting here that the above observations of

the transitional flow development is based on the present

3-D numerical simulation, in which a periodic boundary

condition is assumed in the transverse direction, and

there is no artificial perturbation imposed on either the

boundaries or the interior flow. In this case, the only 3-D

perturbation that may trigger the 3-D convective insta-

bility comes from the accumulation of numerical errors,

which is relatively small when compared with the 2-D

perturbation discussed above. Therefore, the onset of

the B�eenard type instability clearly lags behind the 2-D

instability. This may not be the case in the experiment or

reality. In the experiment described in [7], a water body

in a tank with rigid non-slip sidewalls was exposed to the

radiation. With this configuration, the non-slip wall

boundary condition partly contributed to the 3-D per-

turbations. There were also many other possible sources

of 3-D perturbations in the experiment. With these 3-D

perturbations in place, the onset of the 3-D convective

instability clearly occurred earlier in the experiment than

the time predicted here. Since the 2-D instability was

expected only for a short time in the early transitional

stage, it may not be distinguishable from the 3-D in-

stability in the experiment. In addition, the shadow-

graphs obtained from the experiment represented a

transversely integrated temperature structure. This

would make it even more difficult to distinguish the 2-D

instability from the 3-D plumes.

3.3. Quasi-steady flow

In the transient process, heat is conducted into

the ower layer of the water body from the sloping bot-

tom, and consequently a thermal boundary layer is

generated and grows along the bottom. In the meantime,

a buoyancy-driven flow is initiated within the thermal

boundary layer and an upper intrusion flow is formed

from the discharge of the boundary layer flow. There-

fore, heat is convected away from the boundary layer by

the large-scale circulation. In the present case, the con-

vective instability sets in at certain stage due to the

build-up of an adverse temperature gradient in the

boundary layer, and thus heat is also convected verti-

cally by the secondary motion containing rising plumes

and return flows. Both the primary and secondary

convective motions result in a significant increase of the

temperature in the upper water layer. At some stage, the

heat conducted into the thermal boundary layer is bal-

anced by that convected away from it, and thus the

growth of the thermal boundary layer ceases. This

process has been clearly observed from the shadowgraph

visualisation [7]. The horizontal temperature gradient in

the boundary layer will maintain a steady up-slope flow,

while the vertical adverse temperature gradient may

maintain a secondary motion. Therefore, a quasi-steady

state is reached.

3.3.1. Flow structure at the quasi-steady state

The typical flow structures at the quasi-steady state

are shown in Fig. 6, which presents the calculated iso-

surfaces of temperatures at t ¼ 0:2 and 0.21 (t� ¼ 5049

and 5302 s) as well as two shadowgraph images at the

same stage. At this stage, the primary circulation is fully

established in the enclosure, which is maintained by

distinct horizontal temperature gradients in both the

upper water layer and the thermal boundary layer (refer

to Fig. 7b). The overall flow structure does not change

significantly at the quasi-steady stage (see Fig. 6a and b).

However, the detail of the flow structure is modified by

the intermittent bursts of rising thermals along the

thermal boundary layer. The intermittent convection is

governed by a cyclic process as described by Foster [15]:

the formation of a thermal boundary layer by diffusion,

the instability of this layer when it becomes sufficiently

thick, the destruction of the layer by convection, the

dying down of the convection and the reformation of the

thermal boundary layer by diffusion. The quasi-steady

flow shown here also shares the experimentally observed
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Fig. 6. Typical temperature structures at the quasi-steady state.

(a) Temperature iso-surfaces at t ¼ 0:20 (t� ¼ 5049 s). (b)

Temperature iso-surfaces at t ¼ 0:21 (t� ¼ 5302 s). (c) Shad-

owgraph at 480 s. (d) Shadowgraph at 600 s.

Fig. 7. Temperature profiles extracted at t ¼ 0:200 and 0.210.

(a) Temperature profiles along the vertical line ðx; zÞ ¼ ð5:5;2:5Þ.
(b) Temperature profiles along the water surface and the slope

at z¼ 2:5. (c) Temperature profiles along transverse lines on the

sloping bottom. (d) Temperature profiles along transverse lines

at the water surface (y ¼ 0).
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features of a bottom-heated convective layer between

two horizontal parallel plates [16].

A comparison between Figs. 5 and 6 indicates that

the secondary convection, comprising of more or less

regularly spanned convection cells, is also well estab-

lished at the quasi-steady stage. Clearly, the secondary

convection in the upper water layer has a dominant

wavelength along the transverse direction near both the

shallow and deep ends (Fig. 6a and b). In fact, there is

also a dominant transverse wavelength for the entire

thermal boundary layer (also see Fig. 7c and corre-

sponding discussion). It is also seen in Fig. 6a and b that

the transverse wavelength for the upper layer increases

along the streamwise direction (also refer to Fig. 7d).

The comparison between Figs. 5 and 6 also indicates

that the intensity of the secondary convection is reduced

at the quasi-steady stage. This is due to the development

of a stabilising upper layer underneath the water surface

(refer to Fig. 7a), which tends to suppress the secondary

convection. At this stage, the rising thermals disperse

completely before reaching the water surface, in contrast

to the penetration of the entire depth in the transitional

stage. This is exactly what has been observed in the

shadowgraph visualisation at later stages (see Fig. 6c

and d and also [7]).

3.3.2. Temperature profiles

The temperature profiles along the horizontal, verti-

cal and transverse directions at two time instances of the

quasi-steady state (t ¼ 0:20 and 0.21, corresponding to

Fig. 6a and b) are plotted in Fig. 7. Fig. 7a presents the

temperature profiles extracted along the vertical line

ðx; zÞ ¼ ð5:5; 2:5Þ near the centre of the enclosure. A

time-averaged temperature profile (for t ¼ 0:18–0.22) is
also plotted in Fig. 7a. It is clear in Fig. 7a that the

temperature structure near the centre of the enclosure is

characterised by three layers: an upper layer with a fa-

vourable temperature gradient, a lower layer with an

adverse temperature gradient and an intermediate layer

between the upper and lower layers. Similar temperature

structure was observed in a bottom-heated horizontal

fluid layer [16]. A comparison between the temperature

profiles at this and early stages (see Figs. 2c and 7a)

indicates that the upper water layer has been heated

significantly, and thus the temperature in the upper fluid

layer is comparable with that in the thermal boundary

layer at the quasi-steady stage. The adverse temperature

gradient in the lower layer is responsible for the sec-

ondary convection, whereas the favourite temperature

gradient in the upper layer tends to suppress the sec-

ondary convection.

Fig. 7b presents the temperature profiles along the

water surface and the slope at z ¼ 2:5, which indicate the

existence of a distinct horizontal temperature gradient

across the enclosure. It is clear that the horizontal

temperature gradient is greatest near the tip, and reduces

gradually with the distance from the tip. As noted pre-

viously, a horizontal temperature gradient builds up

only in the thermal boundary layer in the early stage.

Apart from the boundary region, the temperature iso-

surfaces in the wedge are horizontal, suggesting that no

horizontal temperature gradient exist in the majority of

the enclosure in the early stages. However, the situation

has changed dramatically at the quasi-steady state, at

which a distinct horizontal temperature gradient is ob-

served in the upper layer (see Fig. 7b) in addition to a

horizontal temperature gradient in the thermal bound-

ary layer. These two horizontal temperature gradients

maintain respectively a steady up-slope flow along the

bottom and a steady outflow from the tip region, which

in turn form the large-scale primary circulation in the

wedge at the quasi-steady state. Fig. 7b also indicates

that the surface temperature only slightly changes with

time at this stage (note that the temperature here is

obtained by solving the quasi-steady temperature

equation (13) in which the linear growth of the spatially

averaged temperature is excluded).

The features of the secondary convection in the

transverse direction, particularly the transverse wave-

length can be observed in Fig. 7c and d, which plot

the temperature profiles along the transverse direction

at different locations. Fig. 7c plots the temperature

profiles at three locations on the sloping bottom, while

Fig. 7d plots the temperature profiles at three locations

at the water surface. The horizontal locations are se-

lected so that the flow features near both the shallow

and deep ends as well as the centre of the domain are

demonstrated. It is observed in Fig. 7c that all the

temperature profiles comprises of equal number of

peaks, suggesting that the secondary convection within

the bottom thermal boundary layer has a dominant

wavelength along the transverse direction, and this

wavelength does not change with time at the quasi-

steady state. Within the upper water layer, the secondary

convection also has a dominant transverse wavelength

near the shallow end (e.g. x ¼ 2:5 in Fig. 7d), which

is the same as that of the thermal boundary layer.

However, the transverse wavelength increases along the

streamwise direction within the upper water layer (see

Fig. 7d), which is possibly due to the merger of con-

vection cells as the water depth increases. At loca-

tions near the centre of the enclosure (e.g. x ¼ 5:5), the
ongoing merger causes irregular appearance of the

temperature profiles, whereas at locations near the deep

end (e.g. x ¼ 9:8), the temperature profiles becomes

regular again, and clearly there is a dominant trans-

verse wavelength at this location. The transverse wave-

length of the secondary convection near the deep end

is more than double the wavelength near the shallow

end. A stability analysis specifically focusing on the

features of the secondary convection will be reported

separately.
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3.4. Comparisons with a 2-D simulation

In this section, the present 3-D simulation is com-

pared with the previously reported 2-D simulation [8].

3.4.1. Flow development and structures at different stages

For an initially isothermal and stationary water body

in a wedge, three distinct stages of the flow development

due to the absorption of radiation have been observed

based on the present 3-D simulation, i.e. an initial

growth stage, a transitional stage and a quasi-steady

stage. The initial stage is dominated by conduction at

the bottom boundary, resulting in a thermal boundary

layer growing there, and the flow is purely 2-D. The

transitional stage is characterised by the presence of flow

instabilities, first a 2-D instability, and then a 3-D

B�eenard type instability which is manifested as rising

plumes emanating from the boundary layer and trans-

lating up the slope. The quasi-steady state is character-

ised by a steady rise in the average temperature, a

circulation that encompasses the full region and quasi-

regular presence of the convective instability with a

reduced intensity. At this stage, the flow is fully 3-D

across the domain.

The present observation of the three-stage develop-

ment of the convective circulation agrees favourably

with the previous 2-D simulation [8]. At the early stage

when the flow is 2-D, the 2-D simulation gives the same

prediction as the 3-D calculation. Although the con-

vective flow becomes 3-D as a consequence of the onset

of instability, the nature of the convective instability in

the form of rising plumes allows the 2-D simulation to

capture certain important features of the instability.

Both the 2-D and 3-D simulations agree qualitatively

well with the shadowgraph flow visualisation [7].

3.4.2. Time history of temperatures within the thermal

boundary layer

Fig. 8a and b compare the 3-D prediction of tem-

peratures within the thermal boundary layer (�2 mm

above the sloping bottom) with the data obtained from

the previous 2-D simulation [8] and experimental mea-

surements [7]. Here, the experimental data is normalised

with the scales described in Section 2, and the numerical

data is recovered from the quasi-steady state solution.

Excellent agreement between the 2-D and 3-D simula-

tions can be seen throughout the calculation. The nu-

merical data also agrees well with the experimental

measurements in a qualitative sense despite certain dis-

crepancies between the simulation and experiment. Both

numerical and experimental results reveal a three-stage

development of the flow, and they both indicate that the

frequency of the secondary convection increases toward

the shallow end. The discrepancies between the numer-

ical simulations and the experiments may be attributed

to many factors, including heat conduction across the

Fig. 8. Time series of (a) temperature in the thermal boundary

layer at x ¼ 4:25; (b) temperature in the thermal boundary layer

at x ¼ 6:75; (c) integrated horizontal flow rate and (d) inte-

grated horizontal heat transfer rate.
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walls and surface of the experimental configuration, er-

rors in the determination of flow and fluid properties,

and determination of the input radiation in the experi-

ment. Further experimental and numerical investiga-

tions are required to clarify these discrepancies. The

important point here is that both experiment and sim-

ulation show the same broad features of flow develop-

ment.

3.4.3. Volumetric flow rate and horizontal heat transfer

The volumetric flow rate (or the strength of the cir-

culation) and horizontal heat transfer rate are the two

quantities of practical interests. They are defined in a

2-D domain as [2]

QðxÞ ¼ 1

2

Z 0

�Ax
jujdy;

HðxÞ ¼
Z 0

�Ax
uT

�
� oT

ox

�
dy

ð15Þ

where QðxÞ and HðxÞ are respectively the volumetric flow

rate and heat transfer rate across a vertical sectional

plane at a given x location. In a 3-D domain, these

quantities are defined as

QðxÞ ¼ 1

2W

Z W

0

Z 0

�Ax
jujdy dz;

HðxÞ ¼ 1

W

Z W

0

Z 0

�Ax
uT

�
� oT

ox

�
dy dz

ð16Þ

In Eqs. (15) and (16), the dimensionless quantities Q and

H represent the corresponding dimensional quantities

normalised by the scales k and I0h� respectively. An

averaged volumetric flow rate Q and an averaged heat

transfer rate H can be obtained by integrating these

quantities along the horizontal direction as follows:

Q ¼ 1

L

Z L

0

QðxÞdx; H ¼ 1

L

Z L

0

HðxÞdx ð17Þ

The time histories of the averaged flow rate and heat

transfer rate obtained from both 2-D and 3-D simula-

tions are plotted in Fig. 8c and d. All these plots confirm

the three stages of the flow development (the transitional

and quasi-steady stages are approximately indicated in

the plots). It is seen in Fig. 8c that the average volu-

metric flow rate increases gradually at early stage until it

reaches a very high peak value. Then, there is a sudden

drop in the flow rate and a subsequent fluctuation. In

the transitional stage, the fluctuation of the flow rate is

strong and irregular. After a quasi-steady state is

reached, the average flow rate oscillates about a stable

mean value with reduced amplitude. Similar features can

be observed for the averaged heat transfer rate (Fig. 8d).

At early times, an imbalance between a strong up-slope

flow of hot water ðuT < 0Þ in the boundary layer and a

weak return flow of cool water in the bulk of the domain

results in a negative heat transfer rate ðH < 0Þ. The

switch from the initial growth stage to the transitional

stage corresponds approximately to the presence of the

first dip in the plots of the heat transfer rate, since which

the mean heat transfer rate climbs and eventually be-

comes positive. Both 2-D and 3-D calculations predict

that the switch from the initial stage to the transitional

stage occurs at approximately t ¼ 0:011 (t� ¼ 278 s). The

time series plotted in Fig. 8 suggests that a quasi-steady

state is reached at a time after t ¼ 0:10 (about 42 min in

real time).

It is seen in Fig. 8 that the flow and heat transfer rates

predicted in the 3-D simulation are slightly higher than

those predicted in the 2-D simulation. The difference in

the time-averaged values (from t ¼ 0:18 to 0.22) is about

10% for the flow rate and 6% for the heat transfer rate. It

is also noteworthy in Fig. 8 that the calculated flow and

heat transfer rates from the 3-D simulation fluctuate at

smaller amplitudes than those calculated from the 2-D

simulation at both transitional and quasi-steady stages.

This is because the quantities from the 3-D simulation

are averaged over the transverse direction, whereas

those from the 2-D simulation are representative of the

values on a single sectional plane.

3.5. Dependence on grid resolution and time step

The previous numerical results are obtained from an

81� 61� 41 mesh with 81 nodes over the length ðLÞ, 61
nodes over the depth ðhÞ and 41 nodes over the width

ðW Þ. This mesh is selected based on the results of a mesh

and time-step dependence test, for which three meshes

are tested with different time steps (see Table 1). For the

coarsest mesh (Mesh 1), both the grid spacing and

the calculation time step are doubled from those for the

finest mesh (Mesh 3). Therefore, the CFL (Courant–

Freidrich–Levy) number remains the same for the cal-

culations with Mesh 1 and Mesh 3.

The calculated horizontal flow and heat transfer rates

with different meshes are plotted in Fig. 9a and b, and

the time-averaged values at the quasi-steady state are

listed in Table 1. It can be seen in Fig. 9 that the

solutions with all meshes indicate three stages of the flow

development as noted previously. In the initial growth

Table 1

Parameters and results of mesh and time-step dependence test

Mesh Time

step

(�10�6)

Time-averaged results

at the quasi-steady state

Q H

1 41� 31� 21 2.0 42.19 1.272

2 61� 46� 31 1.5 43.55 1.327

3 81� 61� 41 1.0 43.46 1.293

Maximum variations (%) 3.1 4.3
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stage, the solutions follow closely to each other. There is

a slight discrepancy among the solutions in the predicted

starting time of the transition, and somewhat larger

discrepancies are found in the transitional stage. In the

quasi-steady state, all solutions show a similar flow

pattern with intermittent bursts of rising thermals, and

the predicted time-averaged quantities are reasonably

close (see Table 1).

Fig. 9c–e demonstrate the variations of local flow

structures. Plotted here are the time evolutions of the

calculated temperatures on the sloping bottom at z ¼ 2:5,
showing spatial and temporal variations as well as fluc-

tuations associated with the convective instability. It is

clear that the same flow pattern is revealed by all meshes.

It is also noticeable that the spatial and temporal scales

(wavelength and period) related to the instability depend

on the grid resolution. There are large discrepancies be-

tween the finest mesh and the coarsest mesh. However,

the discrepancies between the two finer meshes are evi-

dently smaller. To precisely resolve the wavelength and

other properties of the instability, which is beyond the

scope of the present investigation, higher grid resolution

may be required. Since the purpose of the present study is

to identify the major features of the flow development

rather than resolve every detail of the convective insta-

bility, the 81� 61� 41 mesh is sufficient for this purpose.

4. Conclusions

The present paper considers the natural convection in

a shallow wedge subject to solar radiation. The primary

purpose of this study is to demonstrate by means of

direct numerical simulations the important features of

the flow development. A similar problem has been

considered by Farrow and Patterson [5]. However,

Farrow and Patterson considered a semi-infinite wedge

which comprises of both shallow and deep waters in

terms of the relative scales of the maximum water depth

and the penetration depth of the radiation [5], whereas

the present study focuses on very shallow waters and

considers an fully enclosed domain. A corresponding

flow visualisation [7] and a 2-D numerical simulation [8]

have been reported previously.

The results of the present 3-D calculation reveal that

the development of the convective circulation in the

water body from an isothermal and stationary state

passes through three distinct stages: an initial stage, a

transitional stage and a quasi-steady stage. The initial

stage is characterised by domination by conduction

at the bottom boundary, which then forms a thermal

boundary layer along the sloping bottom. A primary

circulation is initiated by the temperature gradient in the

thermal boundary layer. The transitional stage is char-

acterised by the presence of instabilities, first a 2-D in-

stability, and then a 3-D B�eenard type instability which

Fig. 9. (a) Time series of integrated horizontal flow rate. (b)

Time series of integrated horizontal heat transfer rate. (c)–(e)

Time evolution of temperatures on the sloping bottom at

z ¼ 2:5. The contour interval is 0.02. (c) Results by 41� 31� 21

mesh. (d) Results by 61� 46� 31 mesh. (e) Results by

81� 61� 41 mesh.
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manifests as rising plumes emanating from the bottom

boundary and translating up the slope. The quasi-steady

state is characterised by a steady rise in average tem-

perature, a circulation which encompasses the full region

and quasi-regular presence of instabilities with reduced

intensities.

The above findings have confirmed the earlier obser-

vations in a physical experiment [7]. In addition, a

comparison between the 3-D and 2-D calculations has

revealed that the 2-D simulation is able to capture the

major features of the flow development, including the

basic features of the flow instabilities, and thus can be

used to extract additional flow details with confidence.

However, the nature of the 2-D model would not allow

a full resolution of the details of the 3-D convective

instability.

It must be recognised that only one single parameter

set is reported here, chosen so that the main features

occur. A number of other parameter regimes may occur

which show different subsets of the present behaviour. A

scaling and numerical analysis that identifies these re-

gimes and their characteristic behaviour can be found in

[6].
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